61 research outputs found

    Unsupervised Domain Adaptation on Reading Comprehension

    Full text link
    Reading comprehension (RC) has been studied in a variety of datasets with the boosted performance brought by deep neural networks. However, the generalization capability of these models across different domains remains unclear. To alleviate this issue, we are going to investigate unsupervised domain adaptation on RC, wherein a model is trained on labeled source domain and to be applied to the target domain with only unlabeled samples. We first show that even with the powerful BERT contextual representation, the performance is still unsatisfactory when the model trained on one dataset is directly applied to another target dataset. To solve this, we provide a novel conditional adversarial self-training method (CASe). Specifically, our approach leverages a BERT model fine-tuned on the source dataset along with the confidence filtering to generate reliable pseudo-labeled samples in the target domain for self-training. On the other hand, it further reduces domain distribution discrepancy through conditional adversarial learning across domains. Extensive experiments show our approach achieves comparable accuracy to supervised models on multiple large-scale benchmark datasets.Comment: 8 pages, 6 figures, 5 tables, Accepted by AAAI 202

    Sequential Subset Matching for Dataset Distillation

    Full text link
    Dataset distillation is a newly emerging task that synthesizes a small-size dataset used in training deep neural networks (DNNs) for reducing data storage and model training costs. The synthetic datasets are expected to capture the essence of the knowledge contained in real-world datasets such that the former yields a similar performance as the latter. Recent advancements in distillation methods have produced notable improvements in generating synthetic datasets. However, current state-of-the-art methods treat the entire synthetic dataset as a unified entity and optimize each synthetic instance equally. This static optimization approach may lead to performance degradation in dataset distillation. Specifically, we argue that static optimization can give rise to a coupling issue within the synthetic data, particularly when a larger amount of synthetic data is being optimized. This coupling issue, in turn, leads to the failure of the distilled dataset to extract the high-level features learned by the deep neural network (DNN) in the latter epochs. In this study, we propose a new dataset distillation strategy called Sequential Subset Matching (SeqMatch), which tackles this problem by adaptively optimizing the synthetic data to encourage sequential acquisition of knowledge during dataset distillation. Our analysis indicates that SeqMatch effectively addresses the coupling issue by sequentially generating the synthetic instances, thereby enhancing its performance significantly. Our proposed SeqMatch outperforms state-of-the-art methods in various datasets, including SVNH, CIFAR-10, CIFAR-100, and Tiny ImageNet. Our code is available at https://github.com/shqii1j/seqmatch

    You Only Condense Once: Two Rules for Pruning Condensed Datasets

    Full text link
    Dataset condensation is a crucial tool for enhancing training efficiency by reducing the size of the training dataset, particularly in on-device scenarios. However, these scenarios have two significant challenges: 1) the varying computational resources available on the devices require a dataset size different from the pre-defined condensed dataset, and 2) the limited computational resources often preclude the possibility of conducting additional condensation processes. We introduce You Only Condense Once (YOCO) to overcome these limitations. On top of one condensed dataset, YOCO produces smaller condensed datasets with two embarrassingly simple dataset pruning rules: Low LBPE Score and Balanced Construction. YOCO offers two key advantages: 1) it can flexibly resize the dataset to fit varying computational constraints, and 2) it eliminates the need for extra condensation processes, which can be computationally prohibitive. Experiments validate our findings on networks including ConvNet, ResNet and DenseNet, and datasets including CIFAR-10, CIFAR-100 and ImageNet. For example, our YOCO surpassed various dataset condensation and dataset pruning methods on CIFAR-10 with ten Images Per Class (IPC), achieving 6.98-8.89% and 6.31-23.92% accuracy gains, respectively. The code is available at: https://github.com/he-y/you-only-condense-once.Comment: Accepted by NeurIPS 202
    • …
    corecore